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Feedback circuits are important building blocks of gene regulatory network. Recent studies with simplified
models found the advantage of coupled fast and slow feedback loops in creating bistable switch, and inter-
linked dual-time feedback loops can enhance robustness to stochasticity and persistence of memory. Based on
the same feedback structure and mathematical model, the effect of noise on persistence of memory is inves-
tigated. It is found that �1� an intermediate amount of single-parameter noise plays a constructive role in
persisting memory through noise-induced changing from monostable to bistable region, while larger single-
parameter noise destroys the memory ability of the system through noise-induced transition between two stable
states. �2� Different from the single-parameter noise, arbitrary amount of the internal noise destroys the
memory ability of the system. �3� For the same feedback structure with less nonlinear feedback which is not
enough to render the system bistability, the single-parameter noise can play similar constructive role through
rendering the system bistability.
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I. INTRODUCTION

Biological memory, which means biological systems ex-
hibit prolonged or permanent responses to transient stimuli,
is a ubiquitous phenomenon �1�. Complex gene networks
store memory through creating two or many discrete, stable
states of network activity �2–4�. In synthetic gene circuits,
the bistability is generated by simple feedback loops. For
example, the synthetic toggle switch is composed of two
proteins �LacI and �cI�, and each protein negatively regu-
lates the synthesis of the other �5,6�. There are two possible
steady states for this system. Because LacI production is re-
pressed by �cI protein, an initial high concentration of �cI
would be self-sustaining and lead to a state with high �cI and
low LacI concentrations. Conversely, because �cI production
is repressed by LacI, if LacI is initially present in high con-
centrations, a second stable state would entail high LacI and
low �cI concentrations. In naturally occurring networks, the
systems possess more complex organization of multiple
nested feedback loops. For example, in the yeast Saccharo-
myces cerevisiae, the galactose signaling pathway involves
more than four proteins, and they regulate the synthesis of
each other negatively or positively �7�. Intuitively, the con-
struction of gene networks influences the persistence of
memory intensively. Recently, Smolen et al. �8� found that
interlinked dual-time feedback loops can enhance persistence
of memory.

Noise can be introduced into the gene regulatory network
by diverse sources. The external noise originates from the
random variations in one or more of the externally set con-
trol parameters, such as the rate constants associated with a
given set of reactions. While the internal noise comes from
discrete nature of biochemical events such as transcription,
translation, multimerization, and protein/mRNA decay pro-

cesses. The external and internal noises often exist in bio-
logical system simultaneously, and the effect of noise on
biological system has been extensively studied from both
theoretical and experimental points of view �7,9–15�. They
can be controlled experimentally �14�, and the total effects of
noises can be decomposed into internal and external compo-
nents �15�. Both noise sources can enhance or reduce the
coherence in biological system, and external noise coherence
resonance can be suppressed by internal noise, while internal
noise coherence resonance can be enhanced by the modula-
tion of external noise strength �13�. Noise is often perceived
as being undesirable and unpredictable, however, more and
more advantages of noises are found in recent decades. For
instance, our previous work has proven that noise can play
the constructive role to enhance coherence in the bistable
neurons through noise-induced changing from bistable to os-
cillatory regime �16�. Based on a Ca2+ model presented by Li
and Rinzel �17�, Shuai et al. �9� found that internal noise
play an important role in inducing subthreshold or super-
threshold oscillation. In Ref. �7�, Acar et al. enhanced the
cellular memory by reducing the stochastic transition be-
tween stable states, obviously, noise plays a destructive role
to memory in Ref. �7�. Now questions to be raised are as
follows: can noise play some constructive role in persistence
of memory in gene regulatory networks? If it can, what is the
mechanism?

Motivated by the above consideration and based on the
similar models used in Refs. �8,18,19�, we explore the effects
of two different noise sources on persisting memory. One is
the noise originated from single-parameter control, which is
named as “single-parameter noise” to differ from the global
internal noise in the circuit. The other one is the internal
noise due to molecule number fluctuations. The dual-time
feedback structures in Refs. �8,18,19� can enhance the resis-
tance of bistability to noise. This resistance ensures the tran-
sitions between two states, which destroy the memory of the
system, may not be induced by little or intermediate amount
of noise. This is important when the noise effect on memory*Corresponding author; tjuns1979@yahoo.com.cn
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is studied. The advantage of single-parameter noise in per-
sistence of memory is numerically identified, and we explain
the numerical results analytically by using small noise ap-
proximation. This paper is organized as follows. In Sec. II,
an interlinked dual-time feedback circuit and corresponding
mathematical model are introduced. In Sec. III, the effect of
the single-parameter noise on the persistence of memory is
studied numerically, and the results are explained by an ap-
proximate approach in the frame of a small-noise expansion.
In Sec. IV, the effect of internal noise is discussed by simu-
lation with the Gillespie algorithm. In Sec. V, we decrease
the nonlinear feedback in the model to destroy the bistability
of the system, and then the effect of single-parameter noise
on persistence of memory is discussed similarly. We end
with conclusions in Sec. VI.

II. MODEL

The model, which is schematized in Fig. 1, can be ex-
tracted from many realistic biological circuits �19�. Produc-
tions of both A and B are catalyzed by an external stimulus S.
A and B add together to increase the production of the output
element C, and C feeds back to increase the production of
both A and B. Obviously, two coupled positive-feedback
loops are formed in the circuit. The equations of the model
are as follows �8,18�:

�a
da

dt
= f�a,c� = �k1s + k2

c4

c4 + K4��1 − a� − �a + km, �1�

�b
db

dt
= f�b,c� = �k1s + k2

c4

c4 + K4��1 − b� − �b + km, �2�

dc

dt
= kon�a + b��1 − c� − kof fc + kmo, �3�

where a, b, and c represent the concentration of A, B, and C,
correspondingly, and s denotes the stimulus strength. �a ,�b
are the two time constants of feedback loops. The parameter
values are k1=0.1, k2=0.3, K=0.5 �M, km=0.01, kon
=1.0 �M−1 s−1, kof f =0.3 s−1, kmo=0.003 � M s−1, �a
=2.0 s, �b=200.0 s, and �=1.12. Compared to Ref. �18�, �
is a parameter we introduce into the model to represent the
effective decay constant, which may involve the degenera-
tion of protein and dilution due to cell growth.

Bistable response of the system to external stimulus is due
to high nonlinearity in the feedback from C to A and B.
Figure 2 exhibits the response of the system to different

stimulus strength. The two limit points �LPs� enclose a
bistable region; for any s within this region, the model pos-
sesses two stable solutions and one unstable solution; for s
out of this region, the model possesses only one stable solu-
tion. Stable solutions are separated into two branches by the
unstable solution, the upper branch corresponds to bistable
switch-on state, while the lower one corresponds to switch-
off state. It is well known that an enough large amount of
transient stimulus can drive the system from switch-off state
to switch-on state, and if the system is bistable, it can main-
tain on the switch-on state after the stimulus is removed, this
is the phenomenon of biological memory, otherwise, the sys-
tem will draw back to switch-off state.

III. EFFECT OF SINGLE-PARAMETER NOISE
FOR THE BISTABLE MODEL

In this section, the effect of noise originated from single-
parameter fluctuation is discussed. In biological system,
single-parameter control is ubiquitous. For example, the
binding of extracellular agonists to specific receptor in the
cell membrane increases the intracellular concentration of
IP3 �20�. In synthetic gene networks, the effective protein
degradation rates are increased by using SsrA tags �21�. The
control of specific parameters often bring along additional
fluctuations which are larger than other noise source. So con-
sidering noise originated from single-parameter fluctuation is
biological meaningful. It is assumed that the effective decay
constant � is subjected to additive random fluctuation, i.e.,
�→�+��t�. The additive fluctuation gives rise to two multi-
plicative noise terms in Eqs. �1� and �2�, and the stochastic
version of Eqs. �1� and �2� is given by

�a
da

dt
= f�a,c� − a��t� , �4�

�b
db

dt
= f�b,c� − b��t� , �5�

where the multiplicative noises are interpreted in Stratonov-
ich sense, ��t� is the Gaussian white noise. The statistical
properties are given by

FIG. 1. Schematic of the feedback network, where arrows rep-
resent positive regulation.

FIG. 2. Bifurcation diagram of output as a function of stimulus
strength. LP denotes a limit point at which a steady state vanishes.
The solid line indicates stable states, while the dashed line indicates
the unstable states.
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���t�� = 0,���t���t��� = 2���t − t�� , �6�

where � is the corresponding noise intensity and � is the
Kronecker symbol. We use a forward Euler integration
scheme with a time step 10−3 s. Simulations verify further
time step reduction does not significantly improve accuracy.
The numerical algorithm presented by Sancho et al. �22� will
be used to simulate the noise.

The basal stimulus strength is set 0.2, with this value the
system is monostable and close to the bistable region �see
Fig. 2�. No phenomenon of persistence of memory can be
found for the noise-free system. Otherwise, in Fig. 3, it is
illustrated noise enhances the persistence of memory. In all
simulations, the stimulus strength s is changed from the basal
value to 0.5 at time t=60 min and return to basal value at
t=97 min. It seems that the noise produces a new stable
state, and the stability of the state increases with the intensity
of the noise. To quantify the persistence of memory, we de-
fine the memory time tm indicating the period between the
time at which the stimulus is removed �t=97 min� and the
output c is back to the switch-off state. For very low noise
intensity, the memory time is short, and for intermediate �,
the memory time increases, which corresponds to the pro-
longed memory. For large enough �, the system exhibits the
phenomenon of permanent memory.

The average tm for any values of � are calculated over
100 simulations. The results are exhibited in Fig. 4, it shows
that for low noise intensity, tm remains short, after � in-
creases to about 0.06, tm increases exponentially to infinity.

As mentioned in Sec. I, gene networks store memory
through creating multistability of network activity, intu-
itively, the noise enhancing persistence of memory is due to
the noise-induced change from monostable to bistable re-
gion. To analytically explain this change, an approximate
approach is used. In order to establish the effect of the mul-
tiplicative noise term, we note that it has a nonzero mean
equal to

	−
x

�x
��t�
 =

�

�x
2 �x� , �7�

where x=a and b for Eqs. �4� and �5�, correspondingly. The
angular brackets denote averaging over the probability dis-

tribution of the multiplicative noise. According to Eq. �7�,
the noise term gives rise to a systematic nonzero contribution
to the average dynamics of the system. This systematic con-
tribution can be incorporated explicitly into Eqs. �4� and �5�
as the first-order term of a small-noise expansion �23,24�.
The effective equation for Eqs. �4� and �5� can be written as

�a
da

dt
= �k1s + k2

c4

c4 + K4��1 − a� − �� −
�

�a
�a + km,

�b
db

dt
= �k1s + k2

c4

c4 + K4��1 − b� − �� −
�

�b
�b + km. �8�

To understand the behavior of the effective model �Eqs. �3�
and �8��, the stable states are calculated as a function of noise
intensity � in Fig. 5. For � in the region �0.058, 0.576�, the
effective system is bistable, i.e., the noise induces the change
from monostable to bistable region. The � value of the left
“LP” approximately accords with the point at which the
memory time starts to exponentially increase in Fig. 4.

It must be pointed out that the memory is destroyed by the
noise larger than that one in Fig. 4 although the system is
driven to bistable region because larger noise can induce
spontaneous transition to switch-on state without increasing
stimulus strength �see top of Fig. 6�. For every larger noise

FIG. 3. Top to bottom: time series of the output for different
noise intensities. The stimulus strength s is changed from 0.2 to 0.5
at time t=60 min and return to 0.2 at t=97 min.

FIG. 4. Memory time tm vs noise intensity �. The memory time
is averaged over 100 simulations.

FIG. 5. Bifurcation diagram of output as a function of noise
intensity � is plotted based on the effective model.
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intensity, we perform 100 simulations without increasing of
s. In Fig. 7, the fraction of the simulations in which the
spontaneous transition occurs within 500 min is displayed as
a function of noise intensity. It shows that for noise intensity
less than 0.4, almost no spontaneous transition occurs; for
0.4���0.5, the fraction steeply increases to 100%. Fur-
thermore, for noise larger than about 0.57, the system spon-
taneously transits to the switch-on state at time close to t
=0 min �see bottom of Fig. 6�. It is because the noise inten-
sity larger than the right LP in Fig. 5 drives the system to the
region with only one switch-on state.

IV. EFFECT OF INTERNAL NOISE

Comparing to the single-parameter noise, this section will
focus on the overall internal noise due to molecule number
fluctuations. The fluctuations in the copy number of a, b, and
c will be simulated with the Gillespie algorithm �25�. Rela-
tive to the rate equation with noise term �see Eqs. �4� and
�5��, this algorithm is impressively complete and yields a
detailed picture of the behavior of the system modeled. How-
ever, such completeness comes at a high computational cost
and sacrifices any immediate prospect of analytical treat-
ment, such as the small-noise approximation. The Gillespie

algorithm takes variable time steps, and only one reaction
occurs during each time step. Which reaction occur is deter-
mined randomly, with the probability of each reaction pro-
portional to its deterministic rate. In Eqs. �1�–�3�, each term
on the right-hand side corresponds to a reaction rate. A vol-
ume factor � is introduced to implicitly represent the vol-
ume, i.e., increasing � corresponds to increasing volume
while keeping average copy numbers per unit volume the
same. See Ref. �8� for more simulation details. Obviously,
larger � means the system is subjected to less copy number
fluctuation �internal noise�.

Similar to single-parameter noise, the stimulus strength s
is changed from the basal value to 0.5 at time t=60 min and
return to basal value at t=97 min. Many simulations with
different � are performed, and no explicitly increase in
memory time tm is found �see top of Fig. 8�. For enough little
�, i.e., the system subjected to enough large amount of
noise, the system transits spontaneously between the two
stable states �see bottom of Fig. 8�, memory ability of the
system is totally destroyed.

In Fig. 9 the memory time tm is averaged over 100 simu-
lations for different �. It shows that the memory time de-
creases with the decrease in � or the increase in noise

FIG. 6. Time series of the output for the large noise intensities.
The stimulus strength s is fixed at the basal value 0.2.

FIG. 7. The fraction of the simulations in which the spontaneous
transition occurs within 500 min is plotted as a function of noise
intensity.

FIG. 8. Time series of the output for different effective volume
factors. The stimulus strength s is changed from 0.2 to 0.5 at time
t=60 min and return to 0.2 at t=97 min.

FIG. 9. Memory time tm vs effective volume factors �. The
memory time is averaged over 100 simulations.
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amount. Otherwise, comparing to the value of tm in Fig. 4, tm
in Fig. 9 is too short to persist poor biological memory.

In some circumstance, the internal noise is modeled by
simple Langevin equations, i.e., the additive noise terms are
added to the deterministic equations. To compare with the
Gillespie algorithm, here we also test the internal noise by
Langevin method, no significant difference is obtained �re-
sults not show�. In fact, the internal noise corresponds to
overall fluctuations in biological system. We believe the
overall fluctuations due to other sources, such as thermal
fluctuations, influences the persistence of memory similarly
to molecule number fluctuations. Comparing to the internal
noise, the single-parameter noise corresponds to amplifica-
tion of local fluctuation under the overall “background”
noise. It is the local amplification that systematically changes
the dynamics of the system and render it bistability.

V. EFFECT OF SINGLE-PARAMETER NOISE
FOR THE MONOSTABLE MODEL

In Sec. III, the system is easily driven to bistable region
by increasing stimulus strength although the basal stimulus
strength is set 0.2, for which the system possesses only one
stable states �see Fig. 2�. Comparing to the deterministic dy-
namics, it seems that the single-parameter noise plays an
accessorial role in driving the system to bistable region. The
bistability is due to the nonlinear feedback from C to A and
B. In this section, we decrease the nonlinear feedback
through decreasing k2 to 0.28, for which the system is not
bistable for any stimulus strength �see Fig. 10�. How does
the single-parameter noise influence the persistence of
memory in this nonbistable system?

As Sec. III does, the stimulus strength s is changed from
the basal value to 0.5 at time t=60 min and return to basal
value at t=97 min. Figure 11 shows that the same phenom-
enon of enhancing persistence of memory is found in the
nonbistable system. The small-noise approximation is
adapted to explain the enhancement. As an example, the
stable states of the effective model are calculated as a func-
tion of s for k2=0.28 and �=0.5 �see Fig. 10�. It seems that
the noise renders the system bistability although the nonlin-

ear feedback is not large enough to do so, i.e., the noise plays
a role in rendering the system bistability as the nonlinear
feedback does in Sec. III.

To compare the effect of the noise and the nonlinear feed-
back in rendering the system bistability, the bistable region
of the effective model are plotted against the parameters k2
and � in Fig. 12. It shows that with k2 decreases from 0.3,
more and more amount of noise are needed to render the
system bistability, and the bistable region is narrowed. It can
be easily understood in Figs. 3 and 11. In Fig. 3, noise in-
tensity of less than 0.1 may persist permanent memory,
while, in Fig. 11, noise intensity of 0.8 is needed. In one
word, with decreased nonlinear feedback, the noise is less
efficient in persisting memory. On the other hand, with the
increase in �, the bistable region of the system are also nar-
rowed. So we can come to the conclusion that the single-
parameter noise is same as the nonlinear feedback in render-
ing the system bistability.

It must be pointed out that the analytical method used in
this paper is valid for small noise. In the right part of Figs. 5
and 12, the analytical results may be inaccurate. However,
we prefer to the accordance of analytical results and simula-
tions for lower noise intensity. For high noise intensity, it is

FIG. 10. �Color online� The steady states of the systems as a
function of stimulus strength s�k2=0.28�.

FIG. 11. Top to bottom: time series of the output for different
noise intensities. The stimulus strength s is changed from 0.2 to 0.5
at time t=60 min and return to 0.2 at t=97 min�k2=0.28�.

FIG. 12. Phase diagram showing the dynamics of the system. In
the shadowed region, the effective model is bistable, elsewhere the
model is monostable.
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obvious that the large fluctuation or transiting between the
states makes the persistence of memory impossible.

VI. CONCLUSION

In summary, we have studied the effect of noise on per-
sistence of memory in an interlinked dual-time feedback
loops, which is extracted from many realistic gene regulatory
networks. It is found that the single-parameter noise due to
single-parameter control plays a constructive role in main-
taining prolonged even permanent memory while the internal
noise cannot. A effective model is derived by using small-
noise approximation to analytically explain the effect of
single-parameter noise, and the constructive role of single-
parameter noise is due to the noise-induced change from
monostable to bistable region. Further comparing shows the

single-parameter noise can solely render the system bistabil-
ity while the increasing of stimulus cannot change it from
monostable to bistable region.

The single-parameter noise in this paper is originated
from parameter �. We believe the noises that originated from
the other parameters can also give rise to some systematic
contribution to the dynamics of the system, which may link
to some constructive biological function of noise, and this is
a motivation of our future work.
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